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Abstract
The conventional Vlasov treatment of beam-plasma instabilities is
inappropriate when the plasma is strongly coupled. In the strongly coupled
liquid state, the strong correlations between the dust grains fundamentally affect
the conditions for instability. In the crystalline state, the inherent anisotropy
couples the longitudinal and transverse polarizations, and results in unstable
excitations in both polarizations. We summarize analyses of resonant and non-
resonant, as well as resistive instabilities. We consider both ion-dust streaming
and dust beam-plasma instabilities. Strong coupling, in general, leads to an
enhancement of the growth rates. In the crystalline phase, a resonant transverse
instability can be excited.

PACS numbers: 52.27.Gr, 52.35.Qz, 52.27.Lw

1. Introduction

The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the
plasma is strongly coupled. A realizable example is the case of strongly coupled dusty
plasmas under laboratory conditions, permeated by streaming ions: in this case, beam-plasma
instabilities may be excited [1, 2]. Another possible example involves the resonant interaction
between a dust beam and a strongly coupled dusty plasma under laboratory or microgravity
conditions. In the strongly coupled liquid state, the correlations between the dust grains
fundamentally affects the dispersion of very low-frequency dust-acoustic waves [3–9] and
the conditions for their instability. In the crystalline state, the inherent anisotropy couples
the longitudinal and transverse polarizations and can result in unstable excitations in both
polarizations.

In this paper, we briefly summarize our recent analyses [10] of resonant and non-
resonant beam-plasma instabilities, as well as resistive instabilities, in a model plasma
composed of a cold, strongly correlated plasma, penetrated by a cold, weakly correlated beam.
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The strongly coupled plasma particles have charge state Z, thermal energy T and average
interparticle spacing d, and satisfy the condition � = Z2e2/dT � 1. Both the beam
and the plasma particles are screened by the background lighter charged particles, with a
Debye screening length λD = k−1

D , and interact via a Yukawa (screened Coulomb) potential,
φ(r) = Z2e2 exp(−kDr)/r . Collisions with background neutral molecules are taken into
account through collision frequencies νj (where j denotes the charged particle species).

A dielectric function formulation is used for the analysis. The main plasma is characterized
by the dielectric function ε(k, ω), and the beam by its polarizability α(k, ω − k · V0), where
V0 is the velocity of the beam. The dispersion relation is given by

Det

[
ε(k, ω) − k2c2

ω2

(
I − kk

k2

)
+ α(k, ω − k · V0)

]
= 0. (1)

The unstable frequency is in the vicinity of k · V0 (the Cerenkov condition) and is given by
ω = k · V0 + δ. When ω = ω(k), where ω(k) is a mode of the plasma, the instability is
resonant: otherwise, it is non-resonant.

2. Instability calculations in the liquid state

When the coupling constant is high, but below a certain critical value, the plasma is in a
strongly correlated liquid state. The essential feature of the liquid state from the point of
view of the excitation of instabilities is that, in contrast to the crystalline phase, it is isotropic.
Thus the collective mode structure of the strongly coupled liquid phase of the Yukawa plasma
comprises both a longitudinal mode and a transverse mode, similar to the one-component
plasma (OCP) [12–15]. In our previous work [3, 4], we investigated the details of this mode
structure, on the basis of the quasi-localized charge approximation (QLCA) [11, 12] (for
a review, see [16]). The QLCA calculations for the longitudinal and transverse dielectric
function of the plasma give [3, 4]

εL/T (k, ω) = 1 − 	2
L0(k)

ω2 − DL/T (k)
. (2)

Here 	L0 (k) is the longitudinal mode frequency in the weakly coupled phase of the plasma,

	2
L0(k) = 	2

0
k2

k2 + k2
D

where 	0 is the plasma frequency, and the local field functions DL(k) and DT (k) are
functionals of the equilibrium pair correlation function (see [16]). The dispersion relations
for the longitudinal (plasmon) and transverse (shear) modes are obtained from εL(k, ω) = 0
and ε−1

T (k, ω) = 0, respectively. These give

	L(k) =
√

	2
L0(k) + DL(k) (3a)

for the longitudinal mode and

	T (k) =
√

DT (k) + µ (3b)

for the transverse mode which arises due to correlational effects; µ is a small electromagnetic
correction.

In the following, we consider two scenarios for instabilities driven by a weakly coupled
beam (with plasma frequency ω0 and velocity V0) in a strongly coupled plasma (with plasma
frequency 	0): (1) a ‘weak’ beam (ω0 � 	0) excites a resonant longitudinal instability, or a
non-resonant quasi-transverse instability; (2) a ‘strong’ beam (ω0 � 	0) excites a Buneman
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type instability. An example of scenario (1) involves injection of a low density dust beam
into a strongly coupled dusty plasma, while an example of scenario (2) involves the streaming
of ions relative to dust in strongly coupled dusty plasmas under laboratory conditions. In
the weakly coupled component, correlations between the particles are negligible, while in the
strongly coupled component their role is crucial. Also, the correlations between the particles
of the two components will be ignored.

2.1. Dust beam/dust plasma instabilities

We consider a strongly coupled dusty plasma, penetrated by a ‘weak’, weakly coupled dust
beam, with ω0 � 	0. These conditions imply that the dust density in the beam is much lower
than the plasma dust density. The beam may excite both longitudinal and transverse waves in
the strongly coupled plasma. The resonance conditions for the excitation of longitudinal and
of transverse waves, are, respectively,

ω � k · V0 + δ � 	L(k) + δ (4a)

ω � k · V0 + δ � 	T (k) + δ (4b)

where δ � k · V0.
First, we consider the excitation of longitudinal waves. The dispersion relation is given

by equation (3a). For � � 1, and in the long wavelength limit, DL(k → 0) ≈ −l2k2, where
l2 = 	2

0d
2f (κ), and f (κ) � 4(a0 + 0.5a2κ

2 + 6a4κ
4)/45, with a0 = 0.899, a2 = 0.103, and

a4 = −0.003, with κ = kDd [3]. Note that since DL(k) < 0, the effect of strong coupling is
to ‘soften’ the mode dispersion. From equation (1), the dispersion relation for the longitudinal
wave instability, in the limit k2c2/ω2 → ∞, is

εL(k, ω) + αL(k, ω − k · V0) ≈ 0 (5)

where the longitudinal component of the beam polarizability is given by [10]

αL(k, ω − k · V0) = − ω2
L0(k)

(ω − k · V0)2
(6)

with

ω2
L0(k) = ω2

0
k2

k2 + k2
D

.

Using the resonance condition (4a) in equation (5), and observing that |DL(k)| � 	2
L0(k),

the growth rate for the longitudinal instability becomes

γ = Im δ =
√

3

24/3
	L0(k)

(
ω0

	0

)2/3 [
1 +

κ2

6
f (κ)

]
. (7)

The growth rate γ /	L0(k) is proportional to (ω0/	0)
2/3 as in the weakly correlated case, but

strong coupling results in a small enhancement of the instability given by the term in square
brackets in equation (7).

Next, we consider the case where a transverse wave is excited, leading to a quasi-transverse
instability. The dispersion relation for transverse shear waves is given by equation (3b). For
� � 1, and in the long wavelength limit,DT (k → 0) = s2k2. Here s is the shear wave velocity,
given by s2 = 	2

0d
2h(κ), where h(κ) = b0 + b2κ

2 + b4κ
4, with b0 = 0.034, b2 = −0.009 and

b4 = 0.001 [4]. From (1), in the limit c2 � s2, the dispersion relation for the excitation of
waves satisfying the resonance condition (4b) becomes

1 − 	2
L0(k)

DT (k) − DL(k)
− ω2

L0(k)

δ2
≈ 0. (8)
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The shear mode prevails in a frequency domain where εL(k, ω) < 0. Thus equation (8)
describes a non-resonant type longitudinal instability with a quadratic equation for δ. The
growth rate is

γ = Im δ = ωL0(k)

√
κ2[h(κ) + f (κ)]

1 − κ2[h(κ) + f (κ)]
. (9)

For this case, the growth rate γ /	L0(k) is proportional to ω0/	0, that is, the ratio of the
beam to plasma frequencies. Insofar as the growth rate is concerned, the fact that a transverse
wave is also excited is not relevant. The resonance of the instability with the transverse wave
becomes important in two ways. First, as displayed below, the polarization of the perturbation
electric field associated with the instability picks up a small transverse component: in this
sense the instability becomes quasi-transverse,

ET

EL

≈ −ω2
L0

δ2

ω

kc

V0T

c

where ET and EL are the transverse and longitudinal components, respectively, of the perturbed
electric field, V0T = V0 − (k · V0)/k, and it has been assumed that |δω| � |µ2| [10]. Thus
in order for the mode to be quasi-transverse, V0 must have a component perpendicular to k.
The second aspect that makes the appearance of the transverse mode important is that a
coupling between the transverse and longitudinal modes would complete the feedback loop
and would render the instability a genuine resonant transverse instability. While such a
coupling mechanism is not part of the present model, it can be due to various physical effects,
such as nonlinear mode–mode coupling, finite-size beam effects, and an anisotropy of the
medium. An example for the last effect is given in section 3.

2.2. Longitudinal ion-dust instability

In several laboratory dusty plasmas, the ions stream relative to the charged dust with speed
V0 larger the ion thermal speed vi , thus comprising an ion beam. For example, in dust
Coulomb crystals, the grains are localized near plasma sheath interface regions, where the
ion flow toward the electrode is approximately equal to the ion sound speed, which can be
�vi since, typically, Te/Ti � 1 [17, 2]. Further, ions can have flow speeds V0 > vi in
dusty plasma experiments where the ions are accelerated by an electric field [18]. Ion dust
streaming instabilities in dusty plasmas have been investigated previously [17–19, 1], and here
we consider the effect of strong coupling on such instabilities.

We adopt a viewpoint from the frame in which the weakly correlated ions (with plasma
frequency ω0) are at rest, and the strongly coupled dust grains (with plasma frequency 	0)
comprise a ‘weak’ beam (	0 � ω0) with velocity V0. From equation (1), the dispersion
relation is

1 − ω2
L0

ω̄2
− 	2

L0

(ω̄ + k · V0)2 − DL(k)
= 0 (10)

where the Galilean transformation gives ω̄ = ω − k · V0. Using the resonance condition

ω̄ � −k · V0 + δ � 	L0(k) + δ (11)

in equation (10) and observing that DL(k)
/
	2

L0(k) � 1, the solution of the resulting cubic
equation gives for the real part of the frequency ωr (in the lab frame) and the growth rate γ

ωr = 	L0(k)

2

(
ω0

2	0

)1/3
[

1 − κ2f (κ)

3

(
2	0

ω0

)2/3
]

(12a)
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γ =
√

3	L0(k)

2

(
ω0

2	0

)1/3
[

1 +
κ2f (κ)

3

(
2	0

ω0

)2/3
]

. (12b)

Thus strong coupling results in a small enhancement of the growth rate.
Under laboratory conditions, collisions with neutrals are important, since both νi/ω0

and νd/	0 can be >0.1 (here νi, νd are the ion-neutral, dust-neutral collision frequencies,
respectively). Thus, the instability is likely to be a dissipative instability [17], with δ � νi .
Including collisional effects in equation (10) yields the dispersion relation

1 − ω2
L0

ω̄(ω̄ + iνi)
− 	2

L0

(ω̄ + k · V0)(ω̄ + k · V0 + iνd) − DL(k)
= 0. (13)

The solution of (13), in the limit νd � ωr , gives for the growth rate

γ = −νd

2
+ Im δ = −νd

2
+

	L0(k)√
2

(
ωL0(k)

νi

)1/2 [
1 +

νi

2ωL0(k)
κ2f (κ)

]
. (14)

As can be seen from (14), the dissipative instability is also enhanced by strong coupling.
Although the effect is small, it is more important than in the collisionless case.

3. Instabilities in the crystal state

The main physical difference between the liquid and crystalline (solid) state is that the liquid
is isotropic and the crystal is not. For the crystalline phase we can use the same formalism
as in section 2.1, but in this case the dynamical matrix Dαβ(k) (calculated via a summation
over lattice sites, see, e.g., [20–22]) is, in general, non-diagonal for an arbitrary direction of
wave propagation in the crystal. Thus the longitudinal and transverse modes are coupled.
Here we consider a scenario similar to the one in section 2.1; the plasma crystal is taken as
2D and it is pervaded by a ‘weak’, weakly coupled dust beam with ω0 � 	0. When the
off-diagonal elements of Dαβ(k), say Cαβ(k), are small, there is still a quasi-longitudinal
mode with frequency 	L∗(k), and a quasi-transverse mode with frequency 	T ∗(k) (e.g., [21,
22]). The dispersion relation for these two modes now become

	L∗(k) =
√

	2
L(k) − (k) (15a)

	T ∗(k) =
√

	2
T (k) + (k) (15b)

where (k) represents the coupling due to anisotropy,

(k) � C2(k)

	2
L(k) − 	2

T (k)
� C2(k)

	2
L0(k)

.

The resonance conditions are now given by equations of the form (4a) and (4b) but with the
replacement 	L → 	L∗ and 	T → 	T ∗. Preliminary results show that (i) the longitudinal
resonant instability is excited (cf equation (7)), whose growth rate is not substantially affected
by the anisotropy and (ii) a new type of resonant transverse instability develops. The latter is
due to the fact that the polarizability of the quasi-transverse mode now also has a longitudinal
component. The frequency of the instability is in the vicinity of 	T ∗, with a growth rate of
the order [10]

γT � 	L0(k)

(
ω0

	0

)2/3

kd sin2/3(2θ)q(κ) (16)
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Table 1. Possible experimental parameters. (The subscripts n, e, i, 1 and 2 refer to neutrals,
electrons, ions, dust species 1 and dust species 2, respectively).

Plasma Ar, nn ∼ 3 × 1014 cm−3, ni ∼ 5 × 108 cm−3,
Te ∼ 2 eV, Ti ∼ 0.1 eV, Tn ∼ 0.03 eV ∼ T1 ∼ T2

Dust r1 = 0.3 µm, Z1 ∼ 1000, ρ1 ∼ 1.5 g cm−3, n1 ∼ 2 × 104 cm−3

Dust beam r2 = 0.05 µm, Z2 ∼ 170, ρ2 ∼ 10 g cm−3, n2 ∼ 6 × 102 cm−3

Electric field E ∼ 0.3 V m−1 ⇒ V02 ∼ 10 cm s−1

where q(κ) is determined by the lattice structure. Thus the transverse growth rate is smaller
than the longitudinal one, primarily because of the kd(<1) factor, and it is strongly angle
dependent. Nevertheless, the fact that the instability prevails at a much lower frequency than
the longitudinal one may render it observable without being masked by the latter.

We propose the following set of experimental parameters to investigate these instabilities.
Consider a dusty plasma containing negatively charged dust with two different radii, r1 and
r2 (with r1 � r2), and with different mass densities, ρ1 and ρ2. Suppose there is a horizontal
electric field E in the system (e.g., an axial electric field in a Q-machine [23]). In the presence
of this field (where |E| is much less than that required for an ion-dust streaming instability),
the velocity of species 2,

V02 = −eZ2E
m2ν2

∝ 1

r2
(17)

is much larger than that of species 1 (here Z2,m2 and ν2 are the charge state, mass and collision
frequency, respectively, of dust species 2). Dust species 2 would then play the role of a beam
(with plasma frequency ω02) penetrating a dusty plasma of species 1 (with plasma frequency
	01). The critical speed for the transverse instability would be lowest, since s is much less
than the phase speed of the dust acoustic wave. Table 1 lists some nominal parameters that
satisfy the following conditions: the dusty plasma is strongly coupled

(
Z2

1e
2n

1/3
1

/
Td � 1

)
;

the beam speed is larger than the dust acoustic phase speed (V02 > 	01λD); the beam is weak
(ω02/	01 < 1); collisional effects are small (ν2/ω02 < 1, ν1/	01 < 1); ‘marginally’ cold
beam

(
T2/m2V

2
02 ∼ [ω02/	01]2/3

)
.

4. Summary

Strong coupling, in general, enhances the longitudinal beam-plasma instability. The physical
reason for this, both in the case of of resonant and Buneman-type instability, may be sought
in the reduction of the longitudinal wave frequency from its Vlasov value [3, 4], and the
concomitant reduction of ∂εL(k, ω)/∂ω) at 	L(k). For the quasi-transverse instability, the
main physical effect is the appearance of the low frequency shear mode [4] which, when
excited by the beam, occurs at a frequency where εL(k, ω) has a large negative value. The
enhancement effects are generally small; the most significant enhancement seems to occur
in the case of the longitudinal dissipative instability. In the crystalline phase where the
longitudinal and transverse modes are coupled owing to the anisotropy of the plasma, a
genuine resonant transverse instability may occur. Since the shear phase velocity s is much
lower than the longitudinal phase velocity, the transverse and longitudinal instabilities may be
excited without interfering with each other [10].
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